在互联网逐渐步入大数据时代后,不可避免的给企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是"可视化"的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,"用户画像"的概念也就应运而生。
用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。
用户画像的四阶段
1. 战略解读:企业选择构建用户画像平台,可以实现不同的战略目的,如提升产品服务质量、精准营销等。根据战略目的的不同,用户画像的构建也有所区别。因此首先需要明确用户画像平台的战略意义、平台建设目标和效果预期,进而有针对性的开展实施工作。
2. 建模体系:对用户画像进行数据建模,结合客户实际的需求,找出相关的数据实体,以数据实体为中心规约数据维度类型和关联关系,形成符合客户实际情况的建模体系。
3. 维度分解:以用户、商品、渠道三类数据实体为中心,进行数据维度分解和列举。根据相关性原则,选取和战略目的相关的数据维度,避免产生过多无用数据干扰分析过程。
4. 应用流程:针对不同角色人员的需求(如市场、销售、研发等),设计各角色人员在用户画像工具中的使用功能和应用/操作流程。
用户画像的意义
1. 完善产品运营,提升用户体验:改变以往闭门造车的生产模式,通过事先调研用户需求,设计制造更适合用户的产品,提升用户体验。
2. 对外服务,提升盈利:根据产品特点,找到目标用户,在用户偏好的渠道上与其交互,促成购买,实现精准运营和营销。
用户画像构建的难度
主要表现为以下四个方面:
1. 用户微观画像的建立:从人口属性、资产特征、营销特性、兴趣爱好、购物爱好、需求特征等多个维度对用户进行细分。
2. 用户画像的标签建模:从原始数据进行统计分析,得到事实标签,再进行建模分析,得到模型标签,再进行模型预测,得到预测标签。
3. 用户画像的数据架构:从宏观层面汇总和规划用户画像的数据架构。
4. 用户数据的获取和整合:企业需要从各个渠道和系统中收集和整合用户相关数据。